Plant Glycobiology—a diverse world of lectins, glycoproteins, glycolipids and glycans

نویسندگان

  • Nausicaä Lannoo
  • Els J. M. Van Damme
  • Cécile Albenne
  • Elisabeth Jamet
چکیده

Glycosylation is essential for the growth, development or survival of every organism (Varki and Lowe, 2009). Defects in glycan signaling often lead to abnormal development and severe diseases. Glycosylation is ubiquitous and the tremendous structural complexity of glycans makes it quite impossible to predict the biological importance of individual structures. Nowadays, glycans are no longer regarded solely as an energy reservoir, but are associated with storage and transfer of biological information as part of a highly complicated multidimensional coding system (Rüdiger and Gabius, 2009; Gabius et al., 2011; Solís et al., 2014). Plants synthesize a wide variety of unique glycan structures and glycan-binding proteins which play pivotal roles during their life cycle. The increasing number of excellent publications, both in primary and applied plant glycobiology research, demonstrates the great promise and importance of this area for current and future plant science. With 13 original contributions, this Research Topic is a nice compilation of Mini Reviews and Reviews, an Original research paper, and an Opinion Article, highlighting important aspects of plant glycobiology. In plant glycobiology, N-glycans constitute core structures which are grafted on polypeptide backbones. Complex N-glycans are ubiquitously present in plants (Wilson et al., 2001), yet their biological function is virtually unknown. Nguema-Ona et al. (2014) provide an overview of the biosynthesis of N-glycans. Maeda and Kimura nicely review the group of free N-glycans that are released from misfolded proteins or originate from fully processed and secreted proteins by the action of the N-glycan releasing enzymes ENGase and PNGase. They discuss the impact of these plant complex N-glycans in terms of plant development and fruit ripening (Maeda and Kimura, 2014). The paper from Strasser continues this discussion and focuses on recent developments with respect to N-glycan signaling in transgenic A. thaliana and rice plants with disabled N-glycan processing, which ultimately could lead to the development of some new glyco-engineering tools (Strasser, 2014). Next to N-glycans, photosynthesis-derived small sugars such as sucrose, fructose, glucose, trehalose, and derived oligosaccharides, which are generally accepted to be involved in plant energy metabolism and plant growth, have very recently been suggested to act as signal molecules in important plant developmental programs (Ruan, 2014; Smeekens and Hellmann, 2014). In his Opinion Article, Van den Ende (2014) focuses on this intimate communication between plant hormones and small sugars, better-known as the sugar sensing mechanism, and the putative role of small sugars in apical dominance. Plant cell walls are formed of complex interlaced networks of polysaccharides (cellulose, hemicelluose and pectins) and hydroxyproline-rich O-glycoproteins (HRGPs) which are considered as structural proteins (Carpita and Gibeaut, 1993). However, the way these macromolecules are arranged in supramolecular scaffolds is still poorly understood. Knoch et al. (2014) focus on the recent discoveries of carbohydrate active enzymes (CAZy) (Lombard et al., 2014) that are involved in the synthesis as well as in the degradation of arabinogalactan proteins (AGPs), i.e., a highly diverse class of cell surface HRGPs found in most plant species. They discuss the role of these enzymes in plant development. Nguema-Ona et al. (2014) and Hijazi et al. (2014) broaden this discussion and present an overview of the enzymes not only involved in the synthesis of AGPs, but also of extensins, another type of HRGPs, and discuss the importance of both AGPs and extensins for proper cell wall development and morphology as well as their role in biotic stress responses. Hijazi et al. (2014) propose a new model to explain how all types of HRGPs could contribute to a continuous glyco-network with their respective partners including polysaccharides to form a complex architecture in plant cell walls. In the case of secondary cell walls, lignin, and different types of hemicelluloses are found. Hao et al. (2014) present an Original Research paper in which they identified a galacturonosyltransferase (GAUT12) from A. thaliana as a new glycosyltransferase possibly contributing to the synthesis of a polysaccharidic structure including pectins allowing the deposition of xylan and lignin. Plant cell walls not only have a structural function, but also play a critical role in the perception of invading pathogens and the activation of specific plant defense responses, as discussed by Lannoo and Van Damme (2014). This review elaborates how plants can recognize plant pathogens or predators upon perception of characteristic epitopes or damage-associated patterns, using protein-protein interactions as well as protein-glycan interactions mediated by lectins. In addition, they highlight that protein-glycan interactions mediated by different types of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing alpha1-->2 mannosyl residues in MDCK cells.

The 36 kDa vesicular-integral membrane protein, VIP36, has been originally isolated from MDCK cells as a component of glycolipid-enriched detergent-insoluble complexes containing apical marker proteins, and its luminal domain shows homology to leguminous plant lectins and ERGIC-53. As the first step to identify the functional role of VIP36, the carbohydrate binding specificity of VIP36 was inve...

متن کامل

Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy

Aberrant O-glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O-glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from vari...

متن کامل

Functional glycomics and glycobiology: an overview.

Glycomics is the study of the biological role of glycans and glycoconjugates, including glycoproteins, glycolipids, proteoglycans, and of protein-glycan interactions. This chapter outlines the scope of functional glycomics, from biological/biomedical significance to technology development.

متن کامل

Printed covalent glycan array for ligand profiling of diverse glycan binding proteins.

Here we describe a glycan microarray constructed by using standard robotic microarray printing technology to couple amine functionalized glycans to an amino-reactive glass slide. The array comprises 200 synthetic and natural glycan sequences representing major glycan structures of glycoproteins and glycolipids. The array has remarkable utility for profiling the specificity of a diverse range of...

متن کامل

Intracellular lectins are involved in quality control of glycoproteins

Glycoprotein quality control is categorized into three kinds of reactions; the folding of nascent glycoproteins, ER-associated degradation of misfolded or unassembled glycoproteins, and transport and sorting of correctly folded glycoproteins. In all three processes, N-glycans on the glycoproteins are used as tags that are recognized by intracellular lectins. We analyzed the functions of these i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014